Appendix 1.1

1. Definition of limit. Recall from course MATH10242 that we used the definition of convergence of a sequence to test a given sequence converges by assuming that an $\varepsilon>0$ is given and then trying to find an appropriate N. Similarly, we will check a given function has limit L at a point a by assuming that some $\varepsilon>0$ is given and then trying to find an appropriate $\delta>0$.

2. Deleted neighbourhood. Proof of

$$
(a-\delta, a) \cup(a, a+\delta)=\{x: 0<|x-a|<\delta\} .
$$

Proof i) To prove $(a-\delta, a) \cup(a, a+\delta) \subseteq\{x: 0<|x-a|<\delta\}$.
Let $x \in(a-\delta, a) \cup(a, a+\delta)$. This implies

$$
\begin{aligned}
& \Longrightarrow \quad x \in(a-\delta, a) \quad \text { or } \quad x \in(a, a+\delta), \\
& \Longrightarrow \quad a-\delta<x<a \quad \text { or } \quad a<x<a+\delta \\
& \Longrightarrow \quad 0<|x-a|<\delta \quad \text { or } \quad 0<|x-a|<\delta .
\end{aligned}
$$

i.e. in both cases $0<|x-a|<\delta$. Hence $(a-\delta, a) \cup(a, a+\delta) \subseteq$ $\{x: 0<|x-a|<\delta\}$.
ii) To prove $\{x: 0<|x-a|<\delta\} \subseteq(a-\delta, a) \cup(a, a+\delta)$.

Assume $x \in\{x: 0<|x-a|<\delta\}$ so $0<|x-a|<\delta$. We have two cases.
a) Assume $x>a$. Then $x-a>0$ in which case $|x-a|=x-a$ and thus $0<x-a<\delta$. Reinterpret this as $x \in(a, a+\delta)$, which can be weakened to $x \in(a-\delta, a) \cup(a, a+\delta)$.
b) Assume $x<a$.Then $x-a<0$ in which case $|x-a|=a-x$ and thus $0<a-x<\delta$. Reinterpret this as $x \in(a-\delta, a)$, which can be weakened to $x \in(a-\delta, a) \cup(a, a+\delta)$.

In both cases $x \in(a-\delta, a) \cup(a, a+\delta)$. Hence $\{x: 0<|x-a|<\delta\} \subseteq$ $(a-\delta, a) \cup(a, a+\delta)$.

Combine the two set inclusions as

$$
(a-\delta, a) \cup(a, a+\delta)=\{x: 0<|x-a|<\delta\} .
$$

3. The triangle inequality.

Lemma For $a, b \in \mathbb{R}$,

$$
|a-b| \geq||a|-|b|| .
$$

Proof Given $a, b \in \mathbb{R}$ use the triangle inequality within

$$
|a|=|a-b+b| \leq|a-b|+|b|,
$$

which rearranges to give

$$
|a-b| \geq|a|-|b| .
$$

Alternatively, starting with b and not a,

$$
|b|=|b-a+a| \leq|b-a|+|a|=|a-b|+|a|,
$$

which rearranges to give

$$
|a-b| \geq|b|-|a| .
$$

We can combine these two lower bounds as

$$
|a-b| \geq||a|-|b||,
$$

where the right hand side is now always positive due to the modulus sign.
4. Limits of polynomials We will see soon in the lectures that for a polynomial $p(x)$ we have $\lim _{x \rightarrow a} p(x)=p(a)$. So when we are trying to verify the $\varepsilon-\delta$ definition of limit here we need show that $|p(x)-p(a)|$ is small for x close to a. But when $x=a$ then $p(a)-p(a)=0$, i.e. $x=a$ is a root of $p(x)-p(a)$. In turn this means that $x-a$ is a factor of $p(x)-p(a)$, i.e. $p(x)-p(a)=(x-a) q(x)$ for some polynomial $q(x)$.
This was seen above in the example

$$
\lim _{x \rightarrow 2}\left(x^{3}+x^{2}-4 x\right)=4
$$

Here $p(x)=x^{3}+x^{2}-4 x$ and $p(2)=4$. So

$$
p(x)-p(2)=x^{3}+x^{2}-4 x-4=(x-2)\left(a x^{2}+b x+c\right) .
$$

Equating coefficients, $a=1, c=2$ and $b=3$, and so $q(x)=x^{2}+3 x+2$.
5. Example 1.1.10 By verifying the $\varepsilon-\delta$ definition show that

$$
\lim _{x \rightarrow 2} \frac{x^{2}+2 x+2}{x+3}=2 .
$$

Solution To verify this we need consider

$$
\frac{x^{2}+2 x+2}{x+3}-2=\frac{x^{2}-4}{x+3} .
$$

The numerator will always have a factor of $x-a$, here $x-2$. (Why?) In this case

$$
\frac{x^{2}+2 x+2}{x+3}-2=(x-2) \frac{x+2}{x+3}
$$

We are bounding $x-2$ by $|x-2|<\delta$. For our example assume $\delta \leq 1$ so $|x-2|<\delta \leq 1$ becomes $-1<x-2<1$, i.e. $1<x<3$. We have to check that $(x+2) /(x+3)$ is not too large in this interval.

Method 1. With linear polynomials on top and bottom it is easy to write

$$
\frac{x+2}{x+3}=\frac{x+3-1}{x+3}=1-\frac{1}{x+3} .
$$

Then

$$
\begin{aligned}
1<x<3 & \Longrightarrow 4<x+3<6 \\
& \Longrightarrow \frac{1}{6}<\frac{1}{x+3}<\frac{1}{4} \\
& \Longrightarrow \frac{3}{4}=1-\frac{1}{4}<1-\frac{1}{x+3}<1-\frac{1}{6}=\frac{5}{6}
\end{aligned}
$$

Hence

$$
\left|\frac{x+2}{x+3}\right|<\frac{5}{6}
$$

and we can choose $\delta=\min (1,6 \varepsilon / 5)$ when verifying the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 2} \frac{x^{2}+2 x+2}{x+3}=2
$$

Method 2. This method is overkill for such a simple rational function. It is based on the observations that

$$
\max _{[a, b]} \frac{f(x)}{g(x)} \leq \frac{\max _{[a, b]} f(x)}{\min _{[a, b]} g(x)} \quad \text { and } \quad \min \frac{f(x)}{[a, b} \frac{\min _{[a, b]} f(x)}{g(x)} \geq \frac{\max _{[a, b]} g(x)}{\max ^{2}}
$$

as long as $f(x) \geq 0$ and $g(x)>0$ on $[a, b]$.
For our example assume $\delta \leq 1$ so $|x-2|<\delta \leq 1$ becomes $-1<x-2<$ 1 , i.e. $1<x<3$. Then

$$
\frac{x+2}{x+3} \leq \frac{3+2}{1+3}=\frac{5}{4} \quad \text { and } \quad \frac{x+2}{x+3} \geq \frac{1+2}{3+3}=\frac{1}{2}
$$

This suggests we can choose $\delta=\min (1,4 \varepsilon / 5)$ when verifying the $\varepsilon-\delta$ definition of

$$
\lim _{x \rightarrow 2} \frac{x^{2}+2 x+2}{x+3}=2 .
$$

Check this is so.
6. Example 1.1.14 Prove by contradiction that

$$
\lim _{x \rightarrow 0} \sin \left(\frac{\pi}{x}\right)
$$

does not exist.
Solution Assume for a contradiction that $\lim _{x \rightarrow 0} \sin (\pi / x)$ exists. Let $L=\lim _{x \rightarrow 0} \sin (\pi / x)$.

Choose $\varepsilon=1 / 2$ in the $\varepsilon-\delta$ definition of limit to find $\delta>0$ such that if $0<|x|<\delta$ then

$$
\begin{equation*}
\left|\sin \left(\frac{\pi}{x}\right)-L\right|<\frac{1}{2} \tag{7}
\end{equation*}
$$

Choose $n \in \mathbb{N}$ so large that $x_{1}=2 /(1+4 n)<\delta$. For such x_{1} we have that (7) holds while $\sin \left(\pi / x_{1}\right)=1$ and so

$$
\begin{equation*}
|1-L|<\frac{1}{2} \tag{8}
\end{equation*}
$$

Next choose $n \in \mathbb{N}$ so large that $x_{2}=2 /(3+4 n)<\delta$. For such x_{2} we have that (7) holds while $\sin \left(\pi / x_{2}\right)=-1$ and so

$$
\begin{equation*}
|-1-L|<\frac{1}{2}, \quad \text { i.e. }|1+L|<\frac{1}{2} . \tag{9}
\end{equation*}
$$

We combine (9) and (8) using the triangle inequality as

$$
2=|1-L+1+L| \leq|1-L|+|1+L|<\frac{1}{2}+\frac{1}{2}=1 .
$$

Contradiction, hence assumption false, thus $\lim _{x \rightarrow 0} \sin (\pi / x)$ does not exist.

I leave it to the student to write out this proof, changing $\sin (\pi / x)$ to $x /|x|$ to show that

$$
\lim _{x \rightarrow 0} \frac{x}{|x|} \quad \text { does not exist. }
$$

7. Uniqueness of limits. In lectures it was shown that if $\lim _{x \rightarrow a} f(x)$ exists then it is unique. The $x \rightarrow a$ can be replaced by any of $x \rightarrow a+$, $x \rightarrow a-, x \rightarrow+\infty$ or $x \rightarrow-\infty$.

Example If $\lim _{x \rightarrow+\infty} f(x)$ exists, then the limit is unique.
Solution Assume that for the function f the limit is not unique. Let $\ell_{1}<\ell_{2}$ be two of the different limit values (there may be more than two). In the $\varepsilon-X$ definition of $\lim _{x \rightarrow+\infty} f(x)$ choose

$$
\varepsilon=\frac{\ell_{2}-\ell_{1}}{3}>0
$$

Then from definition of $\lim _{x \rightarrow+\infty} f(x)=\ell_{1}$ we find $X_{1}>0$ such that $x>X_{1}$ implies

$$
\begin{equation*}
\left|f(x)-\ell_{1}\right|<\varepsilon . \tag{10}
\end{equation*}
$$

Similarly, from the definition of $\lim _{x \rightarrow+\infty} f(x)=\ell_{2}$ we find $X_{2}>0$ such that $x>X_{2}$ implies

$$
\begin{equation*}
\left|f(x)-\ell_{2}\right|<\varepsilon . \tag{11}
\end{equation*}
$$

Choose an $x_{0}>\max \left(X_{1}, X_{2}\right)$. For such a point both (10) and (11) hold. Hence

$$
\begin{aligned}
\left|\ell_{2}-\ell_{1}\right|= & \left|\ell_{2}-f\left(x_{0}\right)+f\left(x_{0}\right)-\ell_{1}\right| \\
\leq & \left|\ell_{2}-f\left(x_{0}\right)\right|+\left|f\left(x_{0}\right)-\ell_{1}\right| \\
& \quad \quad \text { by the triangle inequality, } \\
& <\varepsilon+\varepsilon \quad \text { by (10) and (11), } \\
= & 2 \varepsilon \\
= & 2\left|\ell_{2}-\ell_{1}\right| / 3 .
\end{aligned}
$$

Dividing through by $\left|\ell_{2}-\ell_{1}\right| \neq 0$ we get $1<2 / 3$, a contradiction. Hence the assumption is false and so, if it exists, $\lim _{x \rightarrow+\infty} f(x)$ is unique.

I leave it to the student to check that, if it exists, then $\lim _{x \rightarrow-\infty} f(x)$ is unique.
8. I stated in the lectures that the $\varepsilon-\delta$ definition of limit at a and the alternative definition were of limit in terms of sequences were equivalent. I prove this now.

Theorem 1.1.11 For $f: A \rightarrow \mathbb{R}, A \subseteq \mathbb{R}$ and $a \in \mathbb{R}$,

$$
\lim _{x \rightarrow a} f(x)=L
$$

iff for all sequences $\left\{x_{n}\right\}_{n \geq 1}$ for which $x_{n} \neq a$ for all $n \geq 1$ and $\lim _{n \rightarrow \infty} x_{n}=a$ we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L
$$

Proof (\Leftarrow) We are assuming there exists $L \in \mathbb{R}$ such that for all sequences $\left\{x_{n}\right\}_{n \geq 1}$ for which $x_{n} \neq a$ for all $n \geq 1$ and $\lim _{n \rightarrow \infty} x_{n}=a$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$. The proof continues by contradiction. Assume that $\lim _{x \rightarrow a} f(x)=L$ is false for this value of L. Symbolically this means

$$
\begin{equation*}
\exists \varepsilon>0, \forall \delta>0, \exists x \in A: 0<|x-a|<\delta \text { and }|f(x)-L| \geq \varepsilon . \tag{12}
\end{equation*}
$$

Because this assures us of the existence of a particular ε, call it ε_{0}.

Apply (12) repeatedly with $\delta=1 / n$ to find for each $n \geq 1$ a point $x_{n} \in A$ with $0<\left|x_{n}-a\right|<1 / n$ and $\left|f\left(x_{n}\right)-L\right| \geq \varepsilon_{0}$. Because of $\left|x_{n}-a\right|<1 / n$ we have that $\lim _{n \rightarrow \infty} x_{n}=L$. Because of $0<\left|x_{n}-a\right|$ we have that $x_{n} \neq a$ for all $n \geq 1$. Hence, by our initial assumption we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$. From the definition of convergence for a sequence with $\varepsilon=\varepsilon_{0} / 2$, this means there exists $N \geq 1$ such $\left|f\left(x_{n}\right)-L\right|<\varepsilon_{0} / 2$ for all $n \geq N$. Yet a deduction from (12) was that $\left|f\left(x_{n}\right)-L\right| \geq \varepsilon_{0}$ for all $n \geq 1$. This contradiction means that our last assumption is false, and so $\lim _{x \rightarrow a} f(x)=L$ holds.
(\Rightarrow) Assume $\lim _{x \rightarrow a} f(x)=L$. Let $\left\{x_{n}\right\}_{n>1}$ be a sequence for which $x_{n} \neq a$ for all $n \geq 1$ and $\lim _{n \rightarrow \infty} x_{n}=a$. Let $\varepsilon>0$ be given. From the definition of $\lim _{x \rightarrow a} f(x)=L$ we get that there exists $\delta>0$ such that

$$
\begin{equation*}
0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon . \tag{13}
\end{equation*}
$$

Choose $\varepsilon=\delta$ in the definition of $\lim _{n \rightarrow \infty} x_{n}=a$ to find $N \geq 1$ such that if $n \geq N$ then $\left|x_{n}-a\right|<\delta$. Since we are assuming $x_{n} \neq a$ for all $n \geq 1$ this gives $0<\left|x_{n}-a\right|<\delta$. Then, by (13), $\left|f\left(x_{n}\right)-L\right|<\varepsilon$. So we have shown that

$$
\forall \varepsilon>0, \exists N \geq 1, n \geq N \Longrightarrow\left|f\left(x_{n}\right)-L\right|<\varepsilon .
$$

That is, we have verified the definition of $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

